The Lunar Model Of Munjala

The Concentric Equant theory was developed by the Indian astronomer, Munjala ( circa 930 CE ).

The Geocentric theory of the ancient astronomers had the ability to produce true Zodiacal Longitudes for the Moon. But the perturbations of the Moon were so complex, that the early Indian and Greek astronomers had to give birth to complicated theories.

The simplest model is a concentric Equant Model to compute the lunar true longitude.

In the above diagram

M = Moon
O = Observer
Eo = Equant , located at a distance r from the observer , drawn on the Line of Apsis and the Apogee.

A = Apogee, Luna’s nearest point to Earth

Angle Alpha = Angle between Position and Apogee ( Manda Kendra )
Angle q1 = Equation of Center . Angle subtended at Luna between Observer and Equant ( Manda Phala )
Equation in Astronomy = The angle between true and mean positions.

These diagrams are by courtesy of Jean-Pierre Lacroix and Robert Baywater, www.ancientcartography.net

The Lunar Model Of Munjala

The Concentric Equant theory was developed by the Indian astronomer, Munjala ( circa 930 CE ).

The Geocentric theory of the ancient astronomers had the ability to produce true Zodiacal Longitudes for the Moon. But the perturbations of the Moon were so complex, that the early Indian and Greek astronomers had to give birth to complicated theories.

The simplest model is a concentric Equant Model to compute the lunar true longitude.

In the above diagram

M = Moon
O = Observer
Eo = Equant , located at a distance r from the observer , drawn on the Line of Apsis and the Apogee.

A = Apogee, Luna’s nearest point to Earth

Angle Alpha = Angle between Position and Apogee
Angle q1 = Equation of Center . Angle subtended at Luna between Observer and Equant
Equation in Astronomy = The angle between true and mean positions.

These diagrams are by courtesy of Jean-Pierre Lacroix and Robert Baywater, www.ancientcartography.net

Astronomy & Maths In India

The Physics Professor of Florida State University, Dennis Duke remarks

“The planetary models of ancient Indian mathematical astronomy are described in several texts. These texts invariably give algorithms for computing mean and true longitudes of the planets, but are completely devoid of any material that would inform us of the origin of the models. One way to approach the problem is to compare the predictions of the Indian models with the predictions from other models that do have, at least in part, a known historical background. Since the Indian models compute true longitudes by adding corrections to mean longitudes, the obvious choices for these latter models are those from the Greco-Roman world. In order to investigate if there is any connection between Greek and Indian models, we should therefore focus on the oldest Indian texts that contain fully described, and therefore securely computable, models. We shall see that the mathematical basis of the Indian models is the equant model found in the Almagest, and furthermore, that analysis of the level of development of Indian astronomy contemporary to their planetary schemes strongly suggests, but does not rigorously prove, that the planetary bisected equant model is pre-Ptolemaic. “

The mutli step algorithms of Indian Astronomy never approximated any Greek geometrical model. Ptolemy’s Almagest was the first book, according to Western Astronomy. We have now the information that Ptolemy did not invent the equant.

Bhaskara II was an astronomer-mathematician par excellence and his magnum opus, the Siddhanta Siromani (” Crown of Astronomical Treatises”) , is a treatise on Astronomy and Mathematics. His book deals with arithemetic, algebra, computation of celestial longitudes of planets and spheres. His work on Kalana ( Calculus ) predates Liebniz and Newton by half a millenium.

The Siddanta Siromani is divided into four parts

1)The Lilavati – ( Arithmetic ) wherein Bhaskara gives proof of c^2 = a^ + b^2. The solutions to cubic, quadratic and quartic indeterminate equations are explained.

2)The Bijaganitha ( Algebra )- Properties of Zero, estimation of Pi, Kuttaka ( indeterminate equations ), integral solutions etc are explained.

3)The Grahaganitha ( Mathematics of the planets ).

For both Epicycles

The Manda Argument , Mean Longitude of Planet – Aphelion = Manda Anomaly

The Sheegra Argument, Ecliptic Longitude – Long of Sun = Sheegra Anomaly

and the computations from there on are explained in detail.

4)The Gola Adhyaya ( Maths of the spheres )

Bhaskara is known for in the discovery of the principles of Differential Calculus and its application to astronomical problems and computations. While Newton and Liebniz had been credited with Differential Calculus, there is strong evidence to suggest that Bhaskara was the pioneer in some of the principles of differential calculus. He was the first to conceive the differential coefficient and differential calculus.

Ancient Indian Mathematics

The Physics Professor of Florida State University, Dennis Duke remarks

“The planetary models of ancient Indian mathematical astronomy are described in several texts. These texts invariably give algorithms for computing mean and true longitudes of the planets, but are completely devoid of any material that would inform us of the origin of the models. One way to approach the problem is to compare the predictions of the Indian models with the predictions from other models that do have, at least in part, a known historical background. Since the Indian models compute true longitudes by adding corrections to mean longitudes, the obvious choices for these latter models are those from the Greco-Roman world. In order to investigate if there is any connection between Greek and Indian models, we should therefore focus on the oldest Indian texts that contain fully described, and therefore securely computable, models. We shall see that the mathematical basis of the Indian models is the equant model found in the Almagest, and furthermore, that analysis of the level of development of Indian astronomy contemporary to their planetary schemes strongly suggests, but does not rigorously prove, that the planetary bisected equant model is pre-Ptolemaic. “

The mutli step algorithms of Indian Astronomy never approximated any Greek geometrical model. Ptolemy’s Almagest was the first book, according to Western Astronomy. We have now the information that Ptolemy did not invent the equant.

Bhaskara II was an astronomer-mathematician par excellence and his magnum opus, the Siddhanta Siromani (” Crown of Astronomical Treatises”) , is a treatise on Astronomy and Mathematics. His book deals with arithemetic, algebra, computation of celestial longitudes of planets and spheres. His work on Kalana ( Calculus ) predates Liebniz and Newton by half a millenium.

The Siddanta Siromani is divided into four parts

1)The Lilavati – ( Arithmetic ) wherein Bhaskara gives proof of c^2 = a^ + b^2. The solutions to cubic, quadratic and quartic indeterminate equations are explained.

2)The Bijaganitha ( Algebra )- Properties of Zero, estimation of Pi, Kuttaka ( indeterminate equations ), integral solutions etc are explained.

3)The Grahaganitha ( Mathematics of the planets ).

For both Epicycles

The Manda Argument , Mean Longitude of Planet – Aphelion = Manda Anomaly

The Sheegra Argument, Ecliptic Longitude – Long of Sun = Sheegra Anomaly

and the computations from there on are explained in detail.

4)The Gola Adhyaya ( Maths of the spheres )

Bhaskara is known for in the discovery of the principles of Differential Calculus and its application to astronomical problems and computations. While Newton and Liebniz had been credited with Differential Calculus, there is strong evidence to suggest that Bhaskara was the pioneer in some of the principles of differential calculus. He was the first to conceive the differential coefficient and differential calculus.

Indian Astronomy Original

The Physics Professor of Florida State University, Dennis Duke remarks

“The planetary models of ancient Indian mathematical astronomy are described in several texts. These texts invariably give algorithms for computing mean and true longitudes of the planets, but are completely devoid of any material that would inform us of the origin of the models. One way to approach the problem is to compare the predictions of the Indian models with the predictions from other models that do have, at least in part, a known historical background. Since the Indian models compute true longitudes by adding corrections to mean longitudes, the obvious choices for these latter models are those from the Greco-Roman world. In order to investigate if there is any connection between Greek and Indian models, we should therefore focus on the oldest Indian texts that contain fully described, and therefore securely computable, models. We shall see that the mathematical basis of the Indian models is the equant model found in the Almagest, and furthermore, that analysis of the level of development of Indian astronomy contemporary to their planetary schemes strongly suggests, but does not rigorously prove, that the planetary bisected equant model is pre-Ptolemaic. “

The mutli step algorithms of Indian Astronomy never approximated any Greek geometrical model. Ptolemy’s Almagest was the first book, according to Western Astronomy. We have now the information that Ptolemy did not invent the equant.

Bhaskara II was an astronomer-mathematician par excellence and his magnum opus, the Siddhanta Siromani (” Crown of Astronomical Treatises”) , is a treatise on Astronomy and Mathematics. His book deals with arithemetic, algebra, computation of celestial longitudes of planets and spheres. His work on Kalana ( Calculus ) predates Liebniz and Newton by half a millenium.

The Siddanta Siromani is divided into four parts

1)The Lilavati – ( Arithmetic ) wherein Bhaskara gives proof of c^2 = a^ + b^2. The solutions to cubic, quadratic and quartic indeterminate equations are explained.

2)The Bijaganitha ( Algebra )- Properties of Zero, estimation of Pi, Kuttaka ( indeterminate equations ) , integral solutions etc are explained.

3)The Grahaganitha ( Mathematics of the planets ).

For both Epicycles

The Manda Argument , Mean Longitude of Planet – Aphelion = Manda Anomaly

The Sheegra Argument, Ecliptic Longitude – Long of Sun = Sheegra Anomaly

and the computations from there on are explained in detail.

4)The Gola Adhyaya ( Maths of the spheres )

Bhaskara is known for in the discovery of the principles of Differential Calculus and its application to astronomical problems and computations. While Newton and Liebniz had been credited with Differential Calculus, there is strong evidence to suggest that Bhaskara was the pioneer in some of the principles of differential calculus. He was the first to conceive the differential coefficient and differential calculus.

Khagola, the Celestial Coordinate System

( Above diagram by courtesy of www.wikipedia.org )

A 360 degree Circle is a coordinate System. And Khagola is the Celestial Coordinate System.

Like the Geographical Coordinate System, the Celestial Coordinate System is another coordinate system, which computes the coordinates of the Khagola, the Celestial Sphere.

The Ascending Sign is called the Ascendant ( Raseenam udayo lagnam ) and is the intersecting point of the Ecliptic ( at the East Point) with the Celestial Horizon. The Descending Sign is the Descendant ( Astha Lagna ) and lies 180 degrees West on the Khshithija, the Celestial Horizon.

Like the Geographical Meridien ( the Prime Meridien ) and the Geographic Equator, the Celestial Coordinate System has a Celestial Meridien ( Nadi Vritta ) and a Celestial Equator.

The Vernal Equinox and the Autumnal Equinox are two intersecting points of the Ecliptic with the Vishu vat Vritta, the Celestial Equator, known as Meshadi and Thuladi.

The Hindu Zero Point of the Ecliptic starts from 0 degrees Beta Arietis, Ashwinyadi, which is the beginning point of the Sidereal Zodiac. This is the Nirayana System, sidereal. The Tropical System, Sayana, also has its adherents in India and starts from Meshadi, 0 degree Aries.

The Galactic Center, the Vishnu Nabhi, lies in Sagittarius. NEP is the North Ecliptic Pole, NGP is the North Galactic Pole and NCP is the North Celestial Pole.

Khagola, The Celestial Coordinate System

( Above diagram by courtesy of www.wikipedia.org )

A 360 degree Circle is a coordinate System. And Khagola is the Celestial Coordinate System.

Like the Geographical Coordinate System, the Celestial Coordinate System is another coordinate system, which computes the coordinates of the Khagola, the Celestial Sphere.

The Ascending Sign is called the Ascendant ( Raseenam udayo lagnam ) and is the intersecting point of the Ecliptic ( at the East Point) with the Celestial Horizon. The Descending Sign is the Descendant ( Astha Lagna ) and lies 180 degrees West on the Khshithija, the Celestial Horizon.

Like the Geographical Meridien ( the Prime Meridien ) and the Geographic Equator, the Celestial Coordinate System has a Celestial Meridien ( Nadi Vritta ) and a Celestial Equator.

The Vernal Equinox and the Autumnal Equinox are two intersecting points of the Ecliptic with the Vishu vat Vritta, the Celestial Equator, known as Meshadi and Thuladi.

The Hindu Zero Point of the Ecliptic starts from 0 degrees Beta Arietis, Ashwinyadi, which is the beginning point of the Sidereal Zodiac. This is the Nirayana System, sidereal. The Tropical System, Sayana, also has its adherents in India and starts from Meshadi, 0 degree Aries.


The Galactic Center, the Vishnu Nabhi, lies in Sagittarius. NEP is the North Ecliptic Pole, NGP is the North Galactic Pole and NCP is the North Celestial Pole.

Khagola, the Celestial Coordinate System

( Above diagram by courtesy of www.wikipedia.org )

A 360 degree Circle is a coordinate System. And Khagola is the Celestial Coordinate System.

Like the Geographical Coordinate System, the Celestial Coordinate System is another coordinate system, which computes the coordinates of the Khagola, the Celestial Sphere.

The Ascending Sign is called the Ascendant ( Raseenam udayo lagnam ) and is the intersecting point of the Ecliptic ( at the East Point) with the Celestial Horizon. The Descending Sign is the Descendant ( Astha Lagna ) and lies 180 degrees West on the Khshithija, the Celestial Horizon.

Like the Geographical Meridien ( the Prime Meridien ) and the Geographic Equator, the Celestial Coordinate System has a Celestial Meridien ( Nadi Vritta ) and a Celestial Equator.

The Vernal Equinox and the Autumnal Equinox are two intersecting points of the Ecliptic with the Vishu vat Vritta, the Celestial Equator, known as Meshadi and Thuladi.

The Hindu Zero Point of the Ecliptic starts from 0 degrees Beta Arietis, Ashwinyadi, which is the beginning point of the Sidereal Zodiac. This is the Nirayana System, sidereal. The Tropical System, Sayana, also has its adherents in India and starts from Meshadi, 0 degree Aries.

The Galactic Center, the Vishnu Nabhi, lies in Sagittarius. NEP is the North Ecliptic Pole, NGP is the North Galactic Pole and NCP is the North Celestial Pole.

It is raining cats and dogs in Kerala

On Saturday, the heavens brimmed with pessimistic prophecies and then came the downpour. ( Today is 19th Jul 2011 )

The Sun has disappeared and it is now raining cats and dogs here. As a concomitant result, I got cold !

This SW Monsoon, defined as a failure this season, may perk up, compensating for the lack of rains during the earlier Mrigasira and Aridra Solar Periods ( Njattuvelas ). Now Punarvasu Njattuvela is on, as the Sun transits Beta Geminorum.

Now the paddy fields are full of water and it rained heavily at night day before yesterday. The ocean became hostile on Chavakkad Beach and surrounding areas, wreaking destruction.

It is raining cats and dogs in Kerala

On Saturday, the heavens brimmed with pessimistic prophecies and then came the downpour. ( Today is 19th Jul 2011 )

The Sun has disappeared and it is now raining cats and dogs here. As a concomitant result, I got cold !

This SW Monsoon, defined as a failure this season, may perk up, compensating for the lack of rains during the earlier Mrigasira and Aridra Solar Periods ( Njattuvelas ). Now Punarvasu Njattuvela is on, as the Sun transits Beta Geminorum.

Now the paddy fields are full of water and it rained heavily at night day before yesterday. The ocean became hostile on Chavakkad Beach and surrounding areas, wreaking destruction.